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Abstract. We develop a Hamiltonian formalism that can be used to study the particle dynamics near stable
equilibria. The construction of an original canonical transformation allowed us to prove the conservation
of the linear momentum P3, which permitted the expansion of the Hamiltonian about a fixed point. The
definition of the rotational variable h whose Poisson algebra properties played the essential role in the
diagonalization of the quadratic Hamiltonian yielding two uncoupled oscillators with definite frequencies
and amplitudes. It is through applying this variable near a fixed point that come to light Heisenberg’s and
Harmonic Oscillator equations of motion of the particles, leading thus the association of the fixed point
trajectories with arbitrary trajectories in its immediate neighborhood. The present formalism succeeded
to treat the problem of free-electron laser dynamics and may be applied to similar cases.

PACS. 52.30.-q Plasma dynamics and flow – 52.30.Cv Magnetohydrodynamics (including electron
magnetohydrodynamics) – 52.30.Gz Gyrokinetics

1 Introduction

The dynamics of charged particles in electric and mag-
netic fields is of both academic and practical interest. The
areas where this problem finds applications include the
development of accelerator physics [1], plasma physics [2],
nuclear physics [3], free-electron lasers [4] and so on.

In this paper, we develop a Hamiltonian formalism
that proved to be efficient in treating the problem of parti-
cle dynamics in a free-electron laser consisting of a helical
wiggler magnetic field and a uniform guide field [5,6]. It is
through the construction of the canonical transformation
of Section 2 and the definition of a rotational variable h
that our work was made suitable to deal with the physical
insight of the problem. As a matter of fact, we restrict
ourselves to two rotational variables h1 =

√
P1 exp(iQ1)

and h2 =
√
P2 exp(iQ2) corresponding to the gyroradius

motion and the guiding center motion, respectively. We
draw attention that our canonical transformation in its
present form is expressed in terms of real and imaginary
parts of these rotational variables. Moreover, the canoni-
cal transformation allowed us to find out the constant of
motion P3. Both Heisenberg’s picture of motion and sim-
ple harmonic oscillator equation are found by applying ĥ
to the case of a fixed point and the resulting Poisson alge-
bra yields two uncoupled harmonic oscillators. Although
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not exact, the new physical system is integrable allowing
then a satisfactory description of the trajectories within
the immediate neighborhood of fixed points (ideal helical
trajectories). The investigation of the oscillator character-
istic frequencies Ω± leads to the complete solution to the
problem in the quadratic approximation; allowing one to
study the different modes of propagation and to identify,
and then avoid the problematic operating conditions of the
concerned system. The present formalism can be applied
to the case of particles under the effect of a transverse
magnetic field as those encountered in Helmholtz coils or
in NMR experiments [7–9].

The organization of the paper is as follows. The canon-
ical transformation and the constants of motion are given
in Section 2. Section 3 is devoted to the rotational vari-
able and Hamiltonian approximation near stable equilibria
finding out the characteristic frequencies giving thereafter
the complete solution of the problem. We end by the con-
clusion. The construction of the canonical transformation
is given in the Appendix.

2 Canonical transformation and constants
of motion

As stated in the introduction, the Hamiltonian that will be
treated is that of an electron in a free-electron laser con-
sisting of a helical wiggler magnetic field and a uniform
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guide field [5,6]. After having performed three canonical
transformations (see the Appendix), the resulting trans-
formation (q1, q2, q3, p1, p2, p3) 7→ (Q1, Q2, Q3, P1, P2, P3)
is given by:

q1 = γ
[√

P1 cos(Q3 +Q1)−
√
P2 sin(Q3 −Q2)

]
(1)

q2 = γ
[√

P1 sin(Q3 +Q1) +
√
P2 cos(Q3 −Q2)

]
(2)

q3 = Q3 (3)

p1 =
1
γ

[
−
√
P1 sin(Q3 +Q1) +

√
P2 cos(Q3 −Q2)

]
(4)

p2 =
1
γ

[√
P1 cos(Q3 +Q1) +

√
P2 sin(Q3 −Q2)

]
(5)

p3 = P3 − L3 (6)

where all parameters and variables are dimensionless. The
canonical angular momentum L3 is given by:

L3 = q1p2 − q2p1 = P1 − P2. (7)

Since the electron is expected to rotate about the q3-axis,
one can state that the generating function corresponding
to an infinitesimal rotation about the same axis is,

G = L · q̂3 = L3. (8)

With the help of equation (11), the last equation of the
transformation gives

p3 = P3 −G = P3 − L3. (9)

It should be noted that the canonical angular momentum
as defined here is different from the mechanical angular
momentum. This is due to the fact that the forces on the
system are of velocity-dependent potential type [10].

In order to prove that P3 is a constant of motion, we
evaluate the following Poisson brackets:

[Q1, L3] = [Q2, p3] = 1
[Q2, L3] = [Q1, p3] = −1

(10)

which gives:

p3 + L3 = constant (11)

yielding the conserved quantity:

P3 = constant. (12)

As a matter of fact, the transformation of Chen and
Davidson [11] who have studied the problem of the elec-
tron dynamics in a free electron laser is indeed canonical
but it violates equation (7). Their canonical transforma-
tion gives:

Lz = xPy − yPx 6= Pφ − PΨ . (13)

This violation is due to the missing sine terms in
the x and y components of their transverse momenta
(Eqs. (14, 15) of Ref. [11]). As a consequence, the trans-
formation of Chen and Davidson succeeded to treat the
one dimensional (1D) case of FELs where the inevitable
dependence of the wiggler on the transverse spatial vari-
ables is neglected, meanwhile it proved to be non compat-
ible with the three-dimensional case.

3 Rotational variable and Hamiltonian
formalism

Defining a new canonical variable (rotational variable) as:

h (Qh = Ωht, Ph) =
√
Ph exp (iQh) (14)

where Qh is an angular generalized co-ordinate and Ph is
the corresponding conjugate momentum.

From the definition (14), we obtain the following
Poisson brackets identities

[h, h∗] = i (15)

[h,H] = ḣ = ihQ̇h +
Ṗh
2h∗

(16)

[[h,H] ,H]= ḧ=
1
h∗

(
−Ṗ 2

h

4Ph
+ iQ̇hṖh+

P̈h
2

)
+h
(
iQ̈h − Q̇2

h

)
(17)

where the point and star denote time derivative and com-
plex conjugate respectively, and H is the Hamiltonian. It
is clear from the above equations that the conjugate mo-
mentum of the rotational variable h is (−ih∗).

Referring to the canonical transformation (1–6), we
obtain two specific rotational variables corresponding to
the transverse coordinates and momenta.

h1 =
√
P1 exp(iQ1)

=
γ

2

[
(q1 + iq2)

γ2
− i (p1 + ip2)

]
exp (−iQ3) , (18)

h2 =
√
P2 exp(iQ2)

=
iγ
2

[
(q1 − iq2)

γ2
− i (p1 − ip2)

]
exp (iQ3) . (19)

For a fixed point
(
Ṗh = 0⇒ Ph = P0 = constant

)
, equa-

tion (16) is reduced to the Heisenberg’s equation where the
states do not depend on time but the physical quantities
change:

h (Qh = Ωht, P0) =
√
P0 exp (iQh) (20)

while equation (17) leads to the well-known simple har-
monic oscillator motion:

[h,H] = ḣ = iΩhh (21)

[[h,H] ,H] = ḧ = −Ω2
hh (22)

which gives,

[hh∗,H] = 0 (23)

and,

H = hh∗Ωh + constant. (24)

If the constant of motion P3 is such that a fixed point of
the Hamiltonian exists, we expand the Hamiltonian about
the fixed point of coordinates:

h10 =
√
P10 exp (iQ10) , h20 =

√
P20 exp (iQ20) ,

h∗10 =
√
P10 exp (−iQ10) , h∗20 =

√
P20 exp (−iQ20) .
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The deviations of the rotationals from equilibrium are de-
noted by:

hi = hi0 + ηi. (25)

The Hamiltonian up to the quadratic term is then:

H (P3, h1, h2) = H0 (P3, h10, h20) +∆H (26)

where the quadratic part is:

∆H =
1
2

4∑
i,j=1

(
∂2H

∂hi∂hj

)
0

ηiηj (27)

and H0 is the fixed part of the Hamiltonian

h3 ≡ h∗1, η3 ≡ η∗1 , h4 ≡ h∗2, η4 ≡ η∗2 . (28)

In order to determine the characteristic frequencies of∆H,
we rewrite the rotational of equation (14) as a linear com-
bination of the different deviations from the fixed point:

h = α1η1 + α2η2 + α3η3 + α4η4 (29)

where the αi’s are unknown coefficients.
Referring to equation (21), the Poisson bracket of h

and ∆H is then:

[h,∆H] =
2∑
k=1

i
{
∂h

∂ηk

∂∆H

∂η(k+2)
− ∂∆H

∂ηk

∂h

∂η(k+2)

}
= iΩhh (30)

depending explicitly on ∆H. This leads to the character-
istic polynomial:

Ω4 + bΩ2 + c = 0 (31)

where b and c are constant coefficients.
The squared characteristic frequencies roots of equa-

tion (31) are then given by:

Ω2
± =

−b±
(
b2 − 4c

)1/2
2

· (32)

The squared frequencies are then determined and we may
solve for the coefficients αi.

As a matter of fact, the normalization of the rotational
variable ensured by equation (30) is equivalent to the fol-
lowing relationship between the αi:

[h, h∗] = i
(
α2

1 + α2
2 − α2

3 − α2
4

)
(33)

imposing then the following condition:

α2
1 + α2

2 − α2
3 − α2

4 = 1. (34)

This normalization condition not only fixes the coeffi-
cients αi, but also determines the sign of the frequency Ω.

Referring to equation (24), the Hamiltonian may be
written as:

H = H0 +∆H = H0 + h+h
∗
+Ω+ + h−h

∗
−Ω−. (35)

Thus, the right hand side of equation (35) gives the rota-
tional variables, which are solutions to Hamilton’s equa-
tions defined by:

h±(t) = h±(t = 0) eiΩ±t =
√
P±(t = 0) eiΩ±t (36)

giving thus two obvious constants of motion P̂+(0)
and P̂−(0).

The complete solution to the problem, in the present
approximation, has thus been found. It is worthy to note
that expressed in terms of the characteristic solutions, the
quadratic Hamiltonian of equation (35) is rewritten as:

∆H = Ω+h+(0)h∗+(0) +Ω−h−(0)h∗−(0)
= Ω+P+(0) +Ω−P−(0) (37)

which shows a system of two uncoupled harmonic oscil-
lators (Q+, P+) and (Q−, P−). In fact, the quantities h±
defined by equation (36) are redefined in the perturbed
system where their time dependence is determined by the
equation of motion (30) and one may write the rigor-
ous equations of motion corresponding to the Hamilto-
nian (37) as:

ḣ± =
[
h±, h

∗
±
] ∂∆H
∂h∗±

· (38)

Constructing new generalized coordinates Θ± and conju-
gate momenta Π± as:

Θ± =
√

2P± sin(Q±), Π± =
√

2P± cos(Q±)

equation (37) takes the form:

∆H =
1
2
Ω+

(
Π2
± +Θ2

+

)
+

1
2
Ω−

(
Π2
− +Θ2

−
)

(39)

which proves that ∆H admits two different forms: one
is a polynomial of degree four in the symplectic phase
variables Π± and Θ± while the other is a polynomial of
degree two in the variables P± =

(
Π2
± +Θ2

±
)
/2. It is

clear that the trajectories of this system are conditionally-
periodic windings on the surfaces P± = constant with
frequencies ∂∆H/∂P±.

4 Conclusion

In this paper, we develop a Hamiltonian formalism that
proved to be efficient in treating the problem of the free
electron laser (FEL) dynamics [5,6]. It is through the
construction of the canonical transformation of Section 2
and the definition of a rotational variable h that our
work was made suitable to deal with the physical in-
sight of the problem. As a matter of fact, we restrict
ourselves to two rotational variables h1 =

√
P1 exp(iQ1)

and h2 =
√
P2 exp(iQ2) corresponding to the gyroradius

motion and the guiding center motion, respectively. We
draw attention that our canonical transformation in its
present form is expressed in terms of real and imaginary
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parts of these rotational variables. Moreover, the canoni-
cal transformation allowed us to find out the constant of
motion P3. Both Heisenberg’s picture of motion and sim-
ple harmonic oscillator equation are found by applying ĥ
to the case of a fixed point and the resulting Poisson alge-
bra yields two uncoupled harmonic oscillators. Although
not exact, the new physical system is integrable allowing
then a satisfactory description of the trajectories within
the immediate neighborhood of fixed points (ideal helical
trajectories). The investigation of the oscillator character-
istic frequencies Ω± leads to the complete solution to the
problem in the quadratic approximation; allowing one to
study the different modes of propagation and to identify,
and then avoid the problematic operating conditions of the
concerned system. The present formalism can be applied
to the case of particles under the effect of a transverse
magnetic field as those encountered in Helmholtz coils or
in NMR experiments [7–9].

Appendix

To verify that the transformation given in equations (1–6)
is canonical; we first perform the following canonical trans-
formation among the space coordinates and momenta,

q1 = γ (Pa − iQb) , q2 = iγ (Pb − iQa) , q3 = Qc,

p1 =
i

2γ
(Pb + iQa) , p2 =

1
2γ

(Pa + iQb) , p3 = Pc,

(A.1)

given by the generating function

F3(p1, p2, p3;Qa, Qb, Qc) = −(2γp2 − iQb)(γp1 +Qa)
+ iγp1Qb − p3Qc. (A.2)

Second, we introduce the polar coordinates α, β, Pα
and Pβ in the transverse phase plane,

Qa =
√

2Pα sin(α), Qb =
√

2Pβ sin(β), Qc = δ

Pα =
√

2Pα cos(α), Pb =
√

2Pβ cos(β), Pc = Pδ (A.3)

with the generating function

F3 (Pa, Pb, Pc;α, β, δ) = −1
2
P 2
a tan(α)+

1
2
P 2
b tan(β)−δPc.

(A.4)

Finally, the canonical transformation,

α = Q1 +Q3, β = Q2 −Q3, δ = Q3,

Pα = P1, Pβ = P2, Pδ = P3 − P1 + P2,
(A.5)

with the generating function

F3(Pα, Pβ , Pδ;Q1, Q2, Q3) = −(Q1 +Q3)Pα
− (Q2 −Q3)Pβ −Q3Pδ (A.6)

yields the resulting canonical transformation in equa-
tions (1–6).
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